

pro2 Network+ Summer School, July 2025 1

Connect2: A research platform for family
computational tinkering

Jonathan Sanderson
Faculty of Engineering & Environment

Northumbria University
Newcastle-upon-Tyne, UK

jonathan.sanderson@northumbria.ac.uk

Abstract—In a recent engagement projectError! Reference source
not found., families were supported to build and program highly
personal mechatronic ‘puppets’. While a well-received and
successful project, families’ responses to the coding components
bear further investigation. This proposal outlines a ‘version 2’
hardware platform, which addresses electrical and practical
limitations of the original devices, while offering potential for a
wider range of programming approaches. We intend to use this
platform as a research tool, to explore influences on the adoption
of tinkering behaviours for coding activities. ‘Computational
tinkering’ is an emergent field of practice and research, and we
believe this work will offer insights for the nascent community.

I. BACKGROUND

Connect[1] was a family engagement project run by the
researcher in partnership with the Making Studios team at
the Life Science Centre, Newcastle-upon-Tyne. Delivered
during and in the aftermath of the COVID-19 pandemic, the
project worked with a total of 150 families. In a typical
workshop, children of late primary age (10–11 years) worked
with a parent or other carer to craft a servo and
microcontroller-operated mechanical puppet of their own
design. The family would code movement sequences which
were triggered on receipt of ‘mood’ messages broadcast by
other puppets. Families’ creations were ambitious,
whimsical, often ridiculous, and sometimes personally
meaningful.

Fig. 1. A Connect puppet, in this case a mildly terrifying spider
wearing an unexplained fez. The fez moved independently of the
spider.

The hardware platform chosen for the project was
Kniwwelino[2], a product of the Luxembourg Institute of
Science & Technology (LIST). While inspired by and
superficially similar to Micro:Bit, Kniwwelino has key
differences which were of value to Connect. Firstly, it is based
on ESP8266. This microcontroller integrates basic Wi-Fi
support, enabling Connect puppets to continue to
communicate with each other once taken home by
participants – an idea of key appeal to participants, and to
the project’s funder.

Secondly, Kniwwelino development is based on the Arduino
toolchain, including a LIST-developed, open-source
Ardublockly[3] derivative[4]. For Connect, this facilitated a
customised deployment which hid or entirely removed many
language and hardware features deemed irrelevant or
distracting, whilst integrating project-specific language
additions. Since the ESP8266 can be flashed over-the-air, the
entire toolchain could be hosted by the project and provided
as a website, with nothing to install on the wide range of PCs,
laptops, tablets and Chromebooks deployed in the schools,
libraries and community venues which hosted workshops.

Fig. 2. A family during a school-hosted Connect workshop,
programming their cat puppet. The whiskers mechanism was
particularly elegant. Note the Chromebook, with no physical
connection to the puppet.

The approach was practical and popular with both venues
and participants. Almost without exception children were
familiar with (and overwhelmingly enthusiastic about)
Scratch-like environments and took the peculiarities of the
project’s implementation in their stride. Following a

pro2 Network+ Summer School, July 2025 2

workshop, participants could also ‘pick up where they left
off’: the server retained scripts and related them to individual
devices via the hardware MAC address. Participants did not
need to take their code with them, the web interface loaded
their board’s last point automatically.

A. Example of target behaviour

In one workshop, a child and her carer had built a cat puppet,
one mechanical component of which was a small cartoon poo
which emerged from the appropriate location. The following
exchange, overheard between child and carer, illustrates the
sort of family learning and exploration dynamic the Connect
system was intended to prompt and support:

“That looks good.”
“Yeah, but it just comes out. [mimes with
hands] I think it should turtle a bit… then plop.”
“OK, let’s work out those [servo] angles and
make some changes.”

Fig. 3. Another (of many) puppet cats, this one uniquely featuring
animated bodily functions (just visible, frame left).

B. Limitations and challenges

While successful on its own terms, the first version of
Connect had its problems. Powering and controlling 5 Volt
devices like servo motors from 3.3 Volt microcontrollers is a
challenge with which practitioners and makers will be
familiar. A typical microservo has a stall current of perhaps
600mA, while microcontroller power supply is often
constrained. ESP8266 VSYS maximum power delivery is not
specified[6], but is usually taken to be around 300mA.

In practice, an ESP82666 can commonly drive one servo
without issue. Adding a second, however, will often lead to
undervolting and/or timing imprecision. To the user, this
presents as ‘jittering’: jerky servo movement.

For Connect, we required servo movement to be
deterministic, repeatable, and smooth – our servo animation
library integrated easing algorithms to allow more natural,
organic and expressive puppet movements. While
occasionally creatively interesting and even funny, servo
jitter was not generally acceptable.

Our eventual solution was to break out a 5V USB supply via a
miniature ‘power distribution board.’ Servo and Kniwwelino
controller power were drawn from this supply, with grounds
tied. While electrically successful – relieved of power supply
duties, three servos could be controlled without issue – the
resulting wiring was confusing, aesthetically challenging,
prone to accidental disconnection, and difficult for
participants to reassemble. The distribution boards were also

hand-made from stripboard and header pins, taking
considerable practitioner time to prepare.

Fig. 4. Kniwwelino/servo wiring harness, as deployed.

A second issue related to the remote compilation/over-the-
air flash update workflow. This met its design objectives, but
introduced a problem: tinkering approaches often revolve
around rapid feedback, trial-and-error, or variations on the
predict-run-investigate-modify-makeError! Reference
source not found. cycle. Mistakes should be easily spotted
and quick to rectify. Unfortunately, remote compilation and
over-the-air flashing imposes an unavoidable latency to the
cycle of around two minutes. Informal observations appear
to support the practitioners’ concern that this latency affects
participants’ willingness to iterate their code. That is:
compilation and flashing latency reduces the ‘tinkerability’ of
the system.

The proposed project aims to provide a hardware platform to
support research into alternative coding environments, and
their impact on participant behaviour and outcomes.

II. RELATED WORK

Berland (2016)[8] explored the relationship between
tinkering methodologies and computational thinking, but
‘computational tinkering’ as a phrase and research
movement emerged during or shortly before the pandemic.

A significant strand of work grew out of ongoing
collaborations between MIT Media Lab (specifically current
and former members of the Scratch team) and the Tinkering
Studio at the Exploratorium in San Francisco – the latter a
nexus of work on tinkering methodologies and practice.

Considerable research interest has focussed on barriers to
the integration of computational components into making
and tinkering activities in informal learning spaces. For
example, Moreno et al (2022)[10] articulated participants’
association of Scratch with school learning, and their
expressed wish to learn different computing skills; frustration
with artificial or overly-constructed technical challenges, for
example the use of a programming environment in place of a
simple light switch; and facilitators’ discomfort with
computing.

This last continues to be explored in greater detail, for
example by Hayden and Roque (2024)[11], who focus on the
space as infrastructure, its role in providing a rich, equitable

pro2 Network+ Summer School, July 2025 3

learning environment, and in shaping facilitators’
preferences and constraints and hence their practice.

Literature about specific computational tinkering
interventions or activities is scant. It’s at present unclear if
this is a result of the field’s recent emergence, project and
publication delays resulting from the pandemic, the research
community’s interest in practitioner challenges, or
practitioners’ lack of access to research publication routes.
Most practical activity appears centred around Scratch, and
increasingly the OctoStudio mobile app[12].

A computational tinkering interest group is coordinated by
the Exploratorium Tinkering Studio along with members (and
former members) of the Scratch/OctoStudio team at MIT
Media Lab. Membership of the group extends across at least
four continents, with roughly monthly Zoom calls.

III. PROTOTYPE

A. Clarification of problems

This project has three objectives:

1. Hardware which addresses the servo power/wiring
problem.

2. A board which facilitates research exploration of
multiple programming approaches, particularly
including low iteration latency.

3. Researcher skills development: building confidence
and at least minimal competence to design custom
boards and commission short-run manufacture
would allow more ambitious future projects.

We propose to reimplement a breadboard prototype (see
figure 5) on a custom PCB, retaining the entire
microcontroller board as a discrete component. This
approach meets objective 3 above, with minimal technical
risk.

Possible extension objectives are outlined below.

B. Controller choice & servo wiring

ESP8266-based devices, including Kniwwelino, typically
supply only a 3.3V VSYS line of limited current capacity, as
noted. Some other boards, notably including many ESP32-
based devices, support a 5V VBUS line, usually derived from
the USB input. A similar approach is taken by the Raspberry
Pi Pico W and Pico 2 W controllers, which are widely
available, including from institutionally-approved suppliers
within the EC/UKCA regulatory area.

While no maximum power draw is documented for Pico
VBUS[13], in our testing we’ve seen few issues driving at least
three servos from a single controller, assuming the specific
servos are tolerant of 3.3V control signals and the USB supply
is adequate.

Our proposed circuit design is, therefore, initially rather
simple: a carrier for a Pico 2 W board, integrating power
circuitry for at least three servos along with other
components needed for the Connect system. These include
and an off-the-shelf 5x5 LED matrix breakout[14] controlled
via I2C, and two physical buttons.

Fig. 5. Representative, partly-functional breadboard prototype.
Note the VBUS jump wire (top left) and 5x5 LED matrix breakout
(top centre).

C. Software status

While not yet ready for workshop use, a basic Micropython
implementation of the Connect system exists, running on Pi
Pico devices. MQTT is used for message exchange, and the
other main component is a custom animation library for
servo control. This has been ported from Arduino to
Micropython, and while further work is needed the current
version is adequately functional. A functional Micropython-
based Connect v2 system presents a low development risk.

D. Coding environment(s)

As an interpreted language, Micropython immediately avoids
the compile/download/flash stages of Arduino development.

Our intention is to test implementations of several
alternative coding environments in workshop circumstances,
and to observe participants’ responses to their respective
affordances and challenges. Categories of coding
environment might include:

1) Text-based

Thonny[15] (desktop application) or ViperIDE[16] (web-
based) provide purely text interfaces to Micropython.
Considering workshop participants’ age, we’d expect this
approach to be problematic. However, the benefits may
outweigh the challenges. We may also be underestimating
children’s abilities and resolve, and the impact of the family
dynamic: “You type, I’ll tell you what to write” might go a long
way.

2) Block-based

BIPES[17], Microblock IDE[18], and other platforms provide
block-based environments. The potential for customisation
will require further investigation, however BIPES appears
likely to leverage our existing experience of modifying and
deploying Blockly environments.

3) Frame-based

Strype[19] is a new web-based Python editor, which explores
a middle ground between block and text coding. A fully block-
based environment is a higher research priority, given
participants’ familiarity with Scratch. However, a common
observation of practitioners designing and facilitating

pro2 Network+ Summer School, July 2025 4

tinkering activities is that over-simplifying elements isn’t
always productive. While the objective might be to smooth
participants’ progress, they’re typically invested in the
process, less averse to problem solving than we might expect,
and keen to develop a sense of mastery.

E. Extensions: towards version 3

We envisage the Pico W-based board to be a
developmental/test/research tool. As such, it’s a deliberately
simple board: a reasonable ‘first board design’ starting point
for the researcher. Two possible extensions are apparent:

The breadboard test piece incorporates a 5x5 LED matrix
controlled over I2C via a IS31FL3731 driver[20]. This is
available as an off-the-shelf breakout from a popular UK
manufacturer/retailer. Integrating a similar circuit directly
into the board design would be an obvious first
enhancement.

Meanwhile, the Connect partners are actively seeking
funding to continue the project. If successful, we’d be looking
for potentially a few hundred production units. At that scale,
it would likely be cost-effective to consider a fully bespoke
board. This would entail replacing the Pico W itself with a
fully integrated implementation using a bare RP2040 or
RP2350 controller, along with a Wi-Fi module such as the
Raspberry Pi RM2 (which appears to be the Infineon
CYW43439[21]). While considerably more ambitious, we
note that a reference board design is available for
RP2350[22].

IV. RESPONSIBLE INNOVATION

One criticism of ‘digital making,’ and by extension
computational tinkering, is that while the digital components
can be very cheap, they represent significant embodied
energy use. For Connect we considered it important that
participants could take their puppets home, complete with
the associated microcontroller. While our telemetry data
suggest that a reasonable proportion of devices were
subsequently connected to the network, two years on from
that project it’s likely that many devices are either already in
or destined for landfill.

As counterbalance, we must consider the benefits to the
participant families. Connect workshops were carefully
designed and facilitated to support families in overcoming
the (considerable) challenges, to attempt something
together which felt beyond their individual comfort zones,
and to prompt positive memories around individual and
family agency, digital technologies, coding, and creativity.
While less tangible, the project partners remain convinced of
the importance of this work. Host schools and community
groups also noted the modelling of response to failure by
carers, and the encouragement of children to discuss moods
and emotions, as particularly valuable.

These costs and benefits are not directly comparable.
Accordingly, we have a responsibility to minimise resource
use and maximise participant benefit.

A. Hardware lifespan & reuse

The Kniwwelino boards used for the original Connect could
be repurposed, though their relative obscurity in the UK is a
limiting factor. Designing hardware for reuse, and fully
documenting it, would be important. So too would be

preparing additional learning materials. One limitation of
Connect was for families responding, “That was awesome –
what do we do next?” The original project offered regrettably
little answer.

Extension materials and resources would prolong the
product life, extracting more value from the hardware, for
relatively limited outlay. The Pi Pico ecosystem is particularly
attractive in this regard, with an increasing range of
hardware, tutorials and learning materials surrounding the
board. Ensuring compatibility with that ecosystem would be
a positive step.

B. Research & hardware relevance

As a new field, computational tinkering is under-researched.
We believe our investigation of coding environments and
participant responses would be useful within that researcher
and practitioner community, helping to inform future work.

The hardware itself might also be helpful: when Connect was
presented to the community (August 2024), addressing the
servo power problem was of significant interest to several
attendees. While some Pico-based boards do offer servo
power supply, these tend to be geared towards more
advanced robotics use. As a result, they’re relatively costly
and Wi-Fi is typically not supported. While we’re wary of
introducing yet another board to the market, there does
appear to be a gap in provision.

V. AUTHOR BIO / EXPERIENCE

I’m an Assistant Professor in the Faculty of Engineering and
Environment at Northumbria, working across the faculty as
part of the multi-award-winning NUSTEM widening
participation research and practice group. I also teach in the
Department of Computer & Information Sciences.

My research interests, pointing towards a some-way-in-the-
future PhD by publication, centre on novel and playful
pedagogies in computing education, particularly in informal
contexts. I’m currently supervising my third PhD student,
who’s investigating responses to failure during making and
computational tinkering activities.

My early career was in television, producing and series
producing documentaries, engineering challenge shows, and
particularly children’s science programming. I subsequently
ran a small science communication consultancy, with clients
across the UK and internationally. Our work included a
popular series of science teacher training films; jump-starting
the Royal Institution’s in-house video efforts[23]; performer
training on three continents; consulting for McKinsey; and
assembling a network of several hundred academics to
support BBC science production.

I’ve been active as a digital maker for a little over ten years,
building theatre props, household devices, and overly-
ambitious installation pieces. The latter have been exhibited
at a Raspberry Pi Birthday Party, the Great Exhibition of the
North, and Maker Faire UK. Connect grew out of that work,
via a pilot ‘Digital Making for Families’ course in 2018.

A theme through my work since around 1990 has been
extending opportunities to children to experience wonder, to
notice that the world is comprehensible, and to feel that their
actions matter – that they have agency over their lives and
surroundings.

pro2 Network+ Summer School, July 2025 5

VI. ACKNOWLEDGEMENTS

The Connect project was funded by the North of Tyne
Combined Authority STEM & Digital Skills Initiative. It was a
collaboration between Northumbria University and Life
Science Centre.

My ongoing computational tinkering work is supported by
the NUSTEM group, and the Digital Learning Lab in the
Department of Computer & Information Sciences, both at
Northumbria University.

VII. REFERENCES

[1] NUSTEM (2020), Connect: Connecting communities through
ridiculous Internet of Things devices. Available at:
https://nustem.uk/connect/ (Accessed 7 May 2025).

[2] Kniwwelino (2017). Available at: https://www.kniwwelino.lu/en/
(Acccessed 7 May 2025).

[3] Ardublockly (2015). Available at:
https://ardublockly.embeddedlog.com/index.html (Accessed 7 May
2025).

[4] Kniwwelino development environment (2018). Available at:
https://code.kniwwelino.lu/ (Accessed 7 May 2025).

[5] Connect development environment (2022). Available at:
https://connect.nustem.uk/ (accessed 7 May 2025).

[6] ESP8266 Hardware Design Guidelines (2024). Available at:
https://www.espressif.com/sites/default/files/documentation/esp8266_
hardware_design_guidelines_en.pdf (Accessed 14 May 2025)

[7] Sentence, S. and Waite, J. 2017. PRIMM: Exploring pedagogical
approaches for teaching text-based programming in school. In
Proceedings of the 12th Workshop on Primary and Secondary
Computing Education (WiPSCE '17). Association for Computing
Machinery, New York, NY, USA, 113–114.
https://doi.org/10.1145/3137065.3137084

[8] Berland, M. 2016. Making, Tinkering and Computational Literacy, in
Makeology, Routledge 2016 ISBN 9781138847811

[9] Bulovic, K., Bentley, Z. and Rusk, N. 2024. Designing for
Tinkerability and Accessibility: Developing the OctoStudio mobile app
to engage blind and visually impaired learners in creating with code. In
Proceedings of the 23rd Annual ACM Interaction Design and Children
Conference (IDC '24). Association for Computing Machinery, New
York, NY, USA, 882–886. https://doi.org/10.1145/3628516.3659411

[10] Moreno, C., Hladik, S., Roque, R., & Hayden, R. (2022). Challenges
in Facilitating Computational Experiences in Informal Learning
Environments. Connected Learning Summit 2022.

[11] Hayden, R. & Roque, R. (2024) Lines of Infrastructuring: Revealing
and Tracing Educators’ Infrastructuring Practices Across Design
Implementations. In Proceedings of the International Conference of the
Learning Sciences (ICLS ‘24).

[12] Bulovic, Katarina, Zoë Bentley, and Natalie Rusk. ‘Designing for
Tinkerability and Accessibility: Developing the OctoStudio Mobile
App to Engage Blind and Visually Impaired Learners in Creating with
Code’. In Proceedings of the 23rd Annual ACM Interaction Design and
Children Conference, 882–86. IDC ’24. New York, NY, USA:
Association for Computing Machinery, 2024.
https://doi.org/10.1145/3628516.3659411.

[13] RP2350 Datasheet (2023). Available at
https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
(Accessed 14 May 2025).

[14] 5x5 RGB Matrix Breakout (2025). Available at
https://shop.pimoroni.com/products/5x5-rgb-matrix-
breakout?variant=21375941279827 (Accessed 14 May 2025).

[15] Thonny – Python IDE for beginners (2015). Available at
https://thonny.org/ (Accessed 14 May 2025).

[16] ViperIDE (2024). Available at
https://github.com/vshymanskyy/ViperIDE?tab=readme-ov-file
(accessed 14 May 2025).

[17] BIPES – Block-based Integrated Platform for Embeded Systems
(2021). Available at https://bipes.net.br/ide/ (accessed 14 May 2025).

[18] microBlock-IDE (2020). Available at https://github.com/microBlock-
IDE/microBlock-IDE (accessed 14 May 2025).

[19] Strype: A Frame-Based Apporach to Python (2025). Available at
https://strype.org/ (accessed 14 May 2025).

[20] IS31FL3731 Audio Modulated Matrix LED Driver (2024). Available
at https://www.lumissil.com/assets/pdf/core/IS31FL3731_DS.pdf
(accessed 14 May 2025).

[21] Infineon CYW43439 1x1 Single-band Wi-Fi 4 + Bluetooth 5.4 combo
device (2024). Available at
https://www.infineon.com/cms/en/product/wireless-
connectivity/airoc-wi-fi-plus-bluetooth-combos/wi-fi-4-
802.11n/cyw43439/ (accessed 14 May 2025).

[22] Hardware Design with RP2350 (2024), Raspberry Pi Foundation.
Available at https://datasheets.raspberrypi.com/rp2350/hardware-
design-with-rp2350.pdf (accessed 14 May 2025).

[23] RiChannel. (2011). Available at:
https://web.archive.org/web/20121017012121/http://richannel.org/
(Accessed 2 May 2025).

https://nustem.uk/connect/
https://www.kniwwelino.lu/en/
https://ardublockly.embeddedlog.com/index.html
https://code.kniwwelino.lu/
https://connect.nustem.uk/
https://www.espressif.com/sites/default/files/documentation/esp8266_hardware_design_guidelines_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp8266_hardware_design_guidelines_en.pdf
https://doi.org/10.1145/3137065.3137084
https://doi.org/10.1145/3628516.3659411
https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://shop.pimoroni.com/products/5x5-rgb-matrix-breakout?variant=21375941279827
https://shop.pimoroni.com/products/5x5-rgb-matrix-breakout?variant=21375941279827
https://thonny.org/
https://github.com/vshymanskyy/ViperIDE?tab=readme-ov-file
https://bipes.net.br/ide/
https://github.com/microBlock-IDE/microBlock-IDE
https://github.com/microBlock-IDE/microBlock-IDE
https://strype.org/
https://www.lumissil.com/assets/pdf/core/IS31FL3731_DS.pdf
https://www.infineon.com/cms/en/product/wireless-connectivity/airoc-wi-fi-plus-bluetooth-combos/wi-fi-4-802.11n/cyw43439/
https://www.infineon.com/cms/en/product/wireless-connectivity/airoc-wi-fi-plus-bluetooth-combos/wi-fi-4-802.11n/cyw43439/
https://www.infineon.com/cms/en/product/wireless-connectivity/airoc-wi-fi-plus-bluetooth-combos/wi-fi-4-802.11n/cyw43439/
https://datasheets.raspberrypi.com/rp2350/hardware-design-with-rp2350.pdf
https://datasheets.raspberrypi.com/rp2350/hardware-design-with-rp2350.pdf
https://web.archive.org/web/20121017012121/http:/richannel.org/

	I. Background
	A. Example of target behaviour
	B. Limitations and challenges

	II. Related work
	III. Prototype
	A. Clarification of problems
	B. Controller choice & servo wiring
	C. Software status
	D. Coding environment(s)
	1) Text-based
	2) Block-based
	3) Frame-based

	E. Extensions: towards version 3

	IV. Responsible innovation
	A. Hardware lifespan & reuse
	B. Research & hardware relevance

	V. Author bio / experience
	VI. Acknowledgements
	VII. References

